
4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 1/19

Building a Prediction Model for PM2.5
Values across the US
2023-04-19
Names and EID: Solomon Leo (sal4294), Vardhan Koripally (vrk385)

Install required packages
library(tidyverse)

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.1 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.1 ✔ tibble 3.2.1
✔ lubridate 1.9.2 ✔ tidyr 1.3.0
✔ purrr 1.0.1
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts
to become errors

library(tidymodels)

── Attaching packages ────────────────────────────────────── tidymodels 1.0.0 ──
✔ broom 1.0.4 ✔ rsample 1.1.1
✔ dials 1.2.0 ✔ tune 1.1.1
✔ infer 1.0.4 ✔ workflows 1.1.3
✔ modeldata 1.1.0 ✔ workflowsets 1.0.1
✔ parsnip 1.1.0 ✔ yardstick 1.1.0
✔ recipes 1.0.5
── Conflicts ─── tidymodels_conflicts() ──
✖ scales::discard() masks purrr::discard()
✖ dplyr::filter() masks stats::filter()
✖ recipes::fixed() masks stringr::fixed()
✖ dplyr::lag() masks stats::lag()
✖ yardstick::spec() masks readr::spec()
✖ recipes::step() masks stats::step()
• Search for functions across packages at https://www.tidymodels.org/find/

library(doParallel)

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 2/19

Loading required package: foreach

Attaching package: 'foreach'

The following objects are masked from 'package:purrr':

accumulate, when

Loading required package: iterators
Loading required package: parallel

Download data set
dat <- read_csv("https://github.com/rdpeng/stat322E_public/raw/main/data/pm25_data.csv.g
z")

Rows: 876 Columns: 50
── Column specification ──
Delimiter: ","
chr (3): state, county, city
dbl (47): id, value, fips, lat, lon, CMAQ, zcta, zcta_area, zcta_pop, imp_a5...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Take a look at data
head(dat)

A tibble: 6 × 50
id value fips lat lon state county city CMAQ zcta zcta_area
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1 1003. 9.60 1003 30.5 -87.9 Alabama Baldwin Fairhope 8.10 36532 190980522
2 1027. 10.8 1027 33.3 -85.8 Alabama Clay Ashland 9.77 36251 374132430
3 1033. 11.2 1033 34.8 -87.7 Alabama Colbert Muscle Sh… 9.40 35660 16716984
4 1049. 11.7 1049 34.3 -86.0 Alabama DeKalb Crossville 8.53 35962 203836235
5 1055. 12.4 1055 34.0 -86.0 Alabama Etowah Gadsden 9.24 35901 154069359
6 1069. 10.5 1069 31.2 -85.4 Alabama Houston Dothan 9.12 36303 162685124
ℹ 39 more variables: zcta_pop <dbl>, imp_a500 <dbl>, imp_a1000 <dbl>,
imp_a5000 <dbl>, imp_a10000 <dbl>, imp_a15000 <dbl>, county_area <dbl>,
county_pop <dbl>, log_dist_to_prisec <dbl>, log_pri_length_5000 <dbl>,
log_pri_length_10000 <dbl>, log_pri_length_15000 <dbl>,
log_pri_length_25000 <dbl>, log_prisec_length_500 <dbl>,
log_prisec_length_1000 <dbl>, log_prisec_length_5000 <dbl>,
log_prisec_length_10000 <dbl>, log_prisec_length_15000 <dbl>, …

Introduction Because of the impracticality of installing particle monitors in numerous locations of the US, it is
desirable to build a prediction model of PM2.5 based on multiple different predictor variables. This report
discusses the performance of four different machine learning models based on 9 different predictor variables.

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 3/19

The models that will be used are linear regression, random forest, kNN, and a single-layer neural network. Linear
regression is a simple prediction model that attaches coefficients to each predictor variable. Random forest
creates a decision tree and averages all of the trees to predict the values. kNN makes predictions based on the
values of the neighbors with the closest variable values. A single layer neural network predicts by detecting subtle
relationships between the predictor variables and the values.

The 9 predictors being used are CMAQ, zcta_pop, imp_a15000, county_pop, log_prisec_length_25000,
popdens_county, popdens_zcta, urc2013, aod.

Two of the variables in the data set, CMAQ and aod, compute the particulate pollution in the area using different
input data. CMAQ is from the US EPA and uses weather data to predict air pollution, and aod is from NASA and
uses satellite data to estimate pollution from the diffraction of a laser. Assuming these computational models are
relatively accurate, they will be highly correlated with the actual observed PM2.5, which makes them good
predictors.

We predict that location the monitor being close to roads and urban infrastructure will increase the PM2.5 levels,
because the cars found on the roads and near the urban infrastructure will pollute the air. This is why the
predictors imp_a15000 (measure of impermeable surfaces in a 1,500 meter radius), and log_prisec_length_25000
(log of primary and secondary road length in a 25,000 meter radius).

We also predict that population and population density are highly correlated with PM2.5 because increased
population correlates with more cars and construction, which cause pollution. This is why the predictors zcta_pop
(zip code population), county_pop (county population), popdens_county (county population density),
popdens_zcta (zip code population density), and urc2013 (urban-rural classification) were added as well.

Visualizations of some of the predictors are shown below.

Select only the columns that we expect to be useful and plot log transformed relations
hips
dat3 = dat %>% select(id, value, CMAQ, zcta_pop, imp_a15000, county_pop, popdens_county,
popdens_zcta, aod)
dat3 |> pivot_longer(values_to = "predictor", cols = c(3:9)) |> group_by(name) |> ggplot
(aes(x = log(predictor), y = log(value))) + geom_point() + facet_wrap(~name)

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 4/19

These visualizations show a relationship between the predictor variables and PM2.5 values.

We expect random forest to perform the best with a prediction RMSE of around 2.0, kNN following closely at
around 2.4, the single layer neural network to be 2.8, and the linear regression to be the worst model at around
3.0.

Wrangling

First we select the predictor variables and save them to a new tibble.

Select predictors for models
dat2 = dat %>% select(id, value, CMAQ, zcta_pop, imp_a15000, county_pop, log_prisec_leng
th_25000, popdens_county, popdens_zcta, urc2013, aod)

Look at data
dat2 |> head()

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 5/19

A tibble: 6 × 11
id value CMAQ zcta_pop imp_a15000 county_pop log_prisec_length_25000
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1003. 9.60 8.10 27829 1.44 182265 13.4
2 1027. 10.8 9.77 5103 0.336 13932 12.8
3 1033. 11.2 9.40 9042 5.25 54428 13.8
4 1049. 11.7 8.53 8300 0.973 71109 13.6
5 1055. 12.4 9.24 20045 5.16 104430 13.7
6 1069. 10.5 9.12 30217 4.74 101547 13.9
ℹ 4 more variables: popdens_county <dbl>, popdens_zcta <dbl>, urc2013 <dbl>,
aod <dbl>

To perform train, test, split we must split the data into two separate sets. The train set will be 80% of the data
sampled randomly from the initial data and the test set will be the remaining 20%. The models will be tuned
and trained on the train set and tested by evaluating the RMSE on the test set. The test set is created by
anti joining the train set to dat2 , which selects all elements that do not have a matching key. We also remove
the ID variable from the train and test sets.

Set seed to make data reproducible
set.seed(2003)

Split data into training and test set
train = sample_frac(dat2, size = 0.8)
test = dat2 %>% anti_join(train, by = "id")

train = train %>% select(-c(id))
test = test %>% select(-c(id))

Observe final train and test sets
train %>% head()

A tibble: 6 × 10
value CMAQ zcta_pop imp_a15000 county_pop log_prisec_length_25000
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 16.7 6.81 30805 4.46 255793 12.7
2 11.1 10.5 5532 0.776 21757 12.6
3 10.7 8.89 45099 14.5 147546 13.8
4 11.6 11.4 36867 10.3 1510271 12.5
5 12.5 9.72 7701 27.9 674158 14.6
6 6.71 5.44 2853 1.41 189927 14.1
ℹ 4 more variables: popdens_county <dbl>, popdens_zcta <dbl>, urc2013 <dbl>,
aod <dbl>

test %>% head()

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 6/19

A tibble: 6 × 10
value CMAQ zcta_pop imp_a15000 county_pop log_prisec_length_25000
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 12.4 10.2 16140 4.30 658466 13.8
2 10.0 8.65 6106 7.72 412992 13.9
3 12.0 10.2 12997 10.9 229363 14.1
4 11.4 8.82 30545 4.18 119490 13.7
5 11.6 10.2 23020 7.98 195085 14.1
6 8.85 12.2 37644 39.1 3817117 14.1
ℹ 4 more variables: popdens_county <dbl>, popdens_zcta <dbl>, urc2013 <dbl>,
aod <dbl>

Results

The four models chosen are linear regression, random forest, kNN, and a single layer neural network. All models
except linear regression have hyperparamters that can be tuned. The primary metric for checking the
performance of the models is RMSE. The RMSE of the model is computed both by 10 cross fold validation and by
using predictions based on the test data set. The RMSE from the cross fold validation is an indicator of the
stability of the model and the RMSE from the predictions is a measure of the prediction capability of the model. In
this report k-fold cross validation is used to select model parameters and estimate model performance.

Since it was expected that several predictors had a linear relationship with the PM2.5 level, a linear model was
chosen first. Since it has no hyperparameters to be tuned it can be set up and run quickly. To do this, the model
was trained on the training set and was then validated using RMSE from predictions and 10 cross fold validation.

Set seed for reproducible
doParallel::registerDoParallel()
set.seed(2163)

Create formula, model, and workflow
fom = train %>% formula(value ~ .)
lm_model = linear_reg(mode = "regression")
lm_wf = workflow() %>% add_formula(fom) %>% add_model(lm_model)

Create 10 folds
lm_folds = vfold_cv(dat2, v = 10)

Create Linear model based on workflow and training data
lm_fit = fit(lm_wf, train)

Estimate model performance on training data
lm_validation = fit_resamples(lm_wf, resamples = lm_folds)
lm_validation %>% collect_metrics()

A tibble: 2 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 rmse standard 2.19 10 0.106 Preprocessor1_Model1
2 rsq standard 0.280 10 0.0310 Preprocessor1_Model1

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 7/19

Compute predictions based on test data
values = test %>% select(value)
lin_pred = cbind(values, predict(lm_fit, new_data = test))
sqrt(mean((lin_pred$value - lin_pred$.pred)^2))

[1] 2.353827

Plot predictions against values
lin_pred |> ggplot(aes(x = .pred, y = value)) + geom_point() +
 geom_abline(intercept = 0, slope = 1, color = "blue") + xlim(5,20)

Since this model has no parameters, the model can be trained immediately. The RMSE from the 10 fold cross
validation was found to be 2.191216, which is quite good for a linear model. Since the model is robust and has a
relatively low RMSE on the training set we can compute predictions and compute the prediction RMSE, which
was found to be 2.353827. This is not as good and suggests that the linear model is not very good at prediction.
Finally we can plot the predictions against the known values to estimate model performance. Many points are
close to the line, but there are also a large amount of ones very far from the line. This confirms that the prediction
capabilities of this model are not very good and another model should be chosen.

The next model used is random forest. This model uses decision trees to predict an outcome based on the
selected predictors. As opposed to linear regression, random forest has three hyperparameters that can be tuned:
mtry, trees, and min_n. These represent the number of samples when constructing trees, the number of trees, and
the minimum tree depth repsectively. In order to tune this model a tuning model and workflow are set up with

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 8/19

each parameter set to tune. 5 folds are then created to be used for model tuning. A grid is also created with all
parameter combinations in it. The grid is then used to compute a set of models using the hyperparameters to
select the best model.

Set seed for reproducibility
set.seed(2530)
doParallel::registerDoParallel()

Create the recipe
rf_rec = recipe(value ~ ., data = train)

Create the model with tuning hyperparameters
tune_spec = rand_forest(mtry = tune(), trees = tune(), min_n = tune()) %>%
 set_mode("regression") %>% set_engine("ranger")

Create tuning workflow
tune_wf = workflow() %>% add_recipe(rf_rec) %>% add_model(tune_spec)

Create 5 folds
rf_folds = vfold_cv(train, v = 5)

Create grid of assortment of values for hyperparameters
rf_grid = grid_regular(mtry(range(c(10,30))), trees(), min_n(), levels = 5)

Compute relevant statistics for each combination of hyperparameter
tune_res = tune_wf %>%
 tune_grid(resamples = rf_folds, grid = rf_grid)

Take a look at all models in descending order of RMSE
tune_res %>% collect_metrics() |> filter(.metric == "rmse") |> arrange(mean)

A tibble: 125 × 9
mtry trees min_n .metric .estimator mean n std_err .config
<int> <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 15 500 2 rmse standard 1.82 5 0.0654 Preprocessor1_Model…
2 20 2000 2 rmse standard 1.82 5 0.0651 Preprocessor1_Model…
3 30 500 2 rmse standard 1.82 5 0.0714 Preprocessor1_Model…
4 15 1500 2 rmse standard 1.82 5 0.0654 Preprocessor1_Model…
5 15 1000 2 rmse standard 1.82 5 0.0665 Preprocessor1_Model…
6 20 1500 2 rmse standard 1.82 5 0.0683 Preprocessor1_Model…
7 30 1000 2 rmse standard 1.82 5 0.0659 Preprocessor1_Model…
8 30 2000 2 rmse standard 1.83 5 0.0680 Preprocessor1_Model…
9 30 1500 2 rmse standard 1.83 5 0.0676 Preprocessor1_Model…
10 25 1000 2 rmse standard 1.83 5 0.0687 Preprocessor1_Model…
ℹ 115 more rows

The best model had 500 trees, a minimum tree depth of 2, and minimum sample size of 15. The RMSE for this
model is 1.819842. We can now select the best model based on the RMSE and use it to finalize the model and
workflow. We can then train this final model on the training data set. This trained model is then used to perform 10
fold cross validation to estimate model stability and performance on the training set.

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 9/19

set.seed(2530)
Select best model and finalize workflow
best_rf = tune_res %>% select_best("rmse")
final_wf_rf = tune_wf %>% finalize_workflow(best_rf)
rf_fit = final_wf_rf %>% fit(data = train)

Warning: 15 columns were requested but there were 9 predictors in the data. 9
will be used.

Perform 10 cross fold validation on training set
rf_folds = vfold_cv(dat2, v = 10)
rf_validation = fit_resamples(final_wf_rf, resamples = rf_folds)
rf_validation %>% collect_metrics()

A tibble: 2 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 rmse standard 1.86 10 0.0401 Preprocessor1_Model1
2 rsq standard 0.480 10 0.0326 Preprocessor1_Model1

Compute predictions for test data
rf_pred = cbind(values, predict(rf_fit, new_data = test))
sqrt(mean((rf_pred$value - rf_pred$.pred)^2))

[1] 2.049121

Plot predictions against values
rf_pred |> ggplot(aes(x = .pred, y = value)) + geom_point() +
 geom_abline(intercept = 0, slope = 1, color = "blue") + xlim(5,20)

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 10/19

The RMSE from 10 fold cross validation was found to be 1.8609770, which is much lower than that of linear
regression. This suggests that random forest is a better model than linear regression since it is more robust. It
also suggests that this model is more robust. Now that the model has been validated we can compute predictions
using the test set. These predictions were used to find the RMSE which was 2.049121. This is much lower than
that of the linear regression model which shows that random forest is also a much better prediction model. Finally
the predictions can be plotted against the known values. The predictions seem to fall much better on the line
which confirms that the random forest model is better than the linear model.

For the kNN model, the only hyperparameter is the number of neighbors. Similar to the random forest model, the
number of neighbors is directly related to the strength of the model. The goal of this hyperparameter tuning is to
minimze the number of neighbors while maximizing model performace and minimizing computation time. Again a
tuning workflow and five folds are created. The model to be tuned is also created along with a grid of tuning
parameters. The model is then computed across them and the best model is chosen.

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 11/19

Set seed for reproducibility
set.seed(5926)

Create recipe
knn_rec = recipe(value ~ ., data = train)

Create kNN model with tuning parameters
tune_knn = nearest_neighbor(neighbors = tune()) %>% set_mode("regression") %>% set_engin
e("kknn")

Create tuning workflow
knn_tune_wf = workflow() %>% add_recipe(knn_rec) %>% add_model(tune_knn)

Create 5 folds
knn_folds = vfold_cv(train, v = 5)

Create grid of tuning parameters
knn_grid = grid_regular(neighbors(range(7,20)), levels = 10)

Create model for all tuning parameters in grid
knn_tune_res = knn_tune_wf %>%
 tune_grid(resamples = knn_folds, grid = knn_grid)

Show relevant statistics for tuned models
knn_tune_res %>% collect_metrics() |> filter(.metric == "rmse") |> arrange(mean)

A tibble: 10 × 7
neighbors .metric .estimator mean n std_err .config
<int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 17 rmse standard 2.02 5 0.116 Preprocessor1_Model08
2 18 rmse standard 2.02 5 0.117 Preprocessor1_Model09
3 20 rmse standard 2.02 5 0.118 Preprocessor1_Model10
4 15 rmse standard 2.02 5 0.114 Preprocessor1_Model07
5 14 rmse standard 2.02 5 0.113 Preprocessor1_Model06
6 12 rmse standard 2.03 5 0.109 Preprocessor1_Model05
7 11 rmse standard 2.03 5 0.108 Preprocessor1_Model04
8 9 rmse standard 2.04 5 0.104 Preprocessor1_Model03
9 8 rmse standard 2.05 5 0.103 Preprocessor1_Model02
10 7 rmse standard 2.06 5 0.100 Preprocessor1_Model01

The best model was found to have 17 neighbors and had an average RMSE of 2.020126. The best model is
selected based on RMSE and is used to create the final workflow and model. This model is then trained on the
training set.

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 12/19

set.seed(2024)
Select best model and create final model
best_knn = knn_tune_res %>% select_best("rmse")
final_wf_knn = knn_tune_wf %>% finalize_workflow(best_knn)
knn_fit = final_wf_knn %>% fit(data = train)

Compute predictions and RMSE from final model
knn_pred = cbind(values, predict(knn_fit, new_data = test))
sqrt(mean((knn_pred$value - knn_pred$.pred)^2))

[1] 2.113405

Perform 10 fold cross validation on the model
knn_folds = vfold_cv(train, v = 10)
knn_validation = fit_resamples(final_wf_knn, resamples = knn_folds)
knn_validation %>% collect_metrics()

A tibble: 2 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 rmse standard 1.99 10 0.0827 Preprocessor1_Model1
2 rsq standard 0.399 10 0.0328 Preprocessor1_Model1

Plot predictions against values
knn_pred |> ggplot(aes(x = .pred, y = value)) + geom_point() +
 geom_abline(intercept = 0, slope = 1, color = "blue") + xlim(5,20)

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 13/19

The mean RMSE from 10 fold cross vaildation was found to be 1.9931279, which is higher than that of the
random forest model. This suggests that this model is not as robust. The final model is then used to compute
predictions based on the testing set. These predictions are used to find the RMSE which was 2.113405. This is
also higher than the RMSE of the random forest predictions which suggests that this model is not as good at
predicting based on new data. Finally the predictions are plotted against the known values. This plot looks very
similar to that of the random forest model but there is less variability in. This is likely since kNN is good at
predicting values close to other values, meaning that it will predict values close to known points but will struggle
to predict points farther away.

The final model used is a single layer neural network. The hyperparameters for this model are hidden_units,
penalty, and epochs. Hidden units is the number of hidden layers, penalty is the amount of weight decay between
layers, and epochs is the number of training iterations. Like the other models, a tuning workflow and model are
created. A grid and five folds are also created. The tuning parameters are swept over the grid and the best model
is chosen.

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 14/19

set.seed(2003)

Create recipe
mlp_rec = recipe(value ~ ., data = train)

Create model with tuning parameters
tune_mlp = mlp(hidden_units = tune(), penalty = tune(), epochs = tune()) %>% set_mode("r
egression") %>% set_engine("nnet")

Create workfow
mlp_tune_wf = workflow() %>% add_recipe(mlp_rec) %>% add_model(tune_mlp)

Create 5 folds
mlp_folds = vfold_cv(train, v = 5)

Create grid of tuning parameters
mlp_grid = grid_regular(hidden_units(), penalty(), epochs(), levels = 5)

Compute all models with grid parameters
mlp_tune_res = mlp_tune_wf %>% tune_grid(resamples = mlp_folds, grid = mlp_grid)

Show relevant statistics for models
mlp_tune_res %>% collect_metrics() |> filter(.metric == "rmse") |> arrange(mean)

A tibble: 125 × 9
hidden_units penalty epochs .metric .estimator mean n std_err .config
<int> <dbl> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 3 1 505 rmse standard 2.10 5 0.0578 Preproces…
2 5 1 257 rmse standard 2.11 5 0.0417 Preproces…
3 5 1 1000 rmse standard 2.11 5 0.0640 Preproces…
4 10 1 752 rmse standard 2.12 5 0.0624 Preproces…
5 7 1 752 rmse standard 2.12 5 0.0591 Preproces…
6 10 1 257 rmse standard 2.12 5 0.0617 Preproces…
7 7 1 505 rmse standard 2.12 5 0.0509 Preproces…
8 7 1 1000 rmse standard 2.13 5 0.0576 Preproces…
9 10 1 1000 rmse standard 2.14 5 0.0501 Preproces…
10 5 1 752 rmse standard 2.14 5 0.0507 Preproces…
ℹ 115 more rows

The best model had 3 hidden units, 1 penalty, and 505 epochs, with an RMSE of 2.103155. Finally this model can
be used to finalize the workflow and create a trained model. We then perform 10 fold cross validation on the
model.

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 15/19

Select best model and finalize model
best_mlp = mlp_tune_res %>% select_best("rmse")
final_wf_mlp = mlp_tune_wf %>% finalize_workflow(best_mlp)
mlp_fit = final_wf_mlp %>% fit(data = train)

Perform 10 fold cross validation on model
mlp_folds = vfold_cv(dat2, v = 10)
mlp_validation = fit_resamples(final_wf_mlp, resamples = mlp_folds)
mlp_validation %>% collect_metrics()

A tibble: 2 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 rmse standard 2.09 10 0.108 Preprocessor1_Model1
2 rsq standard 0.347 10 0.0265 Preprocessor1_Model1

Compute predictions and RMSE from final model
mlp_pred = cbind(values, predict(mlp_fit, new_data = test))
sqrt(mean((mlp_pred$value - mlp_pred$.pred)^2))

[1] 2.283779

Plot predictions against values
mlp_pred |> ggplot(aes(x = .pred, y = value)) + geom_point() +
 geom_abline(intercept = 0, slope = 1, color = "blue") + xlim(5,20)

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 16/19

The mean RMSE was 2.0944299, which is good and shows that the model is stable. It is higher than both random
forest and kNN which suggests that this model is not as strong as the latter. Finally we can compute predictions
and an RMSE using them. This RMSE was found to be 2.283779 which confirms that this model’s prediction
capabilites are not as strong as random forest or kNN.

Now we can pick the final model. Since we are using RMSE as our metric to evaluate models and the goal is to
minimize RMSE, random forest will be the final model. It had the lowest 10 fold cross validation RMSE and
prediction RMSE which show that the model is robust and has strong prediction capabilities. We can now
construct the final model using the entire data set.

set.seed(2023)

Prepare data set for model
datp = dat2 |> select(-c(id))

Create final formula, model, and workflow
ff = datp |> formula(value~.)
model = rand_forest(mode = "regression", engine = "ranger", mtry = 15, trees = 500, min_
n = 2)
wf = workflow() |> add_formula(ff) |> add_model(model)

Create final fit using final workflow
final_fit = fit(wf, datp)

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 17/19

Warning: 15 columns were requested but there were 9 predictors in the data. 9
will be used.

Discussion

Now that we have built and trained the final model, we can test it on the entire data set. We use the model to
compute predictions for the entire data set and add a new column that is the square error of the prediction. We
can use this column to determine locations where the model struggles to predict and locations where the model
predicts well.

Use final model to predict based on data and compute RMSE of final model
datp_pred = dat |> cbind(predict(final_fit, new_data = datp))
sqrt(mean((datp_pred$value - datp_pred$.pred)^2))

[1] 0.6972941

Display the top 10 locations with the greatest square error
datp_pred |> mutate(sqerror = (value-.pred)^2) |> arrange(desc(sqerror)) |> select(stat
e, county, city, sqerror, value, .pred) |> head(10)

state county city sqerror value .pred
1 California Butte Not in a city 19.523574 20.457576 16.03903
2 Arizona Pinal Maricopa 13.178376 19.457895 15.82769
3 Texas El Paso El Paso 12.915179 16.151786 12.55802
4 California San Diego Escondido 11.618405 17.461806 14.05323
5 California Fresno Clovis 11.030108 22.259123 18.93796
6 California Kern Bakersfield 10.314776 23.160784 19.94912
7 Texas El Paso El Paso 9.104330 9.540678 12.55802
8 California Tulare Visalia 8.870834 20.648092 17.66970
9 California Kern Bakersfield 8.136376 21.201299 18.34887
10 New York Monroe Rochester 6.989500 9.038261 11.68203

Display 10 locations with lowest square error
datp_pred |> mutate(sqerror = (value-.pred)^2) |> arrange(sqerror) |> select(state, coun
ty, city, sqerror, value, .pred) |> head(10)

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 18/19

state county city
1 South Carolina Chesterfield Not in a city
2 Missouri Saint Louis Ladue
3 District Of Columbia District of Columbia Washington
4 Arkansas Pulaski Little Rock
5 Texas Travis Austin
6 Massachusetts Suffolk Boston
7 Ohio Warren Lebanon
8 Maryland Baltimore (City) Baltimore
9 Indiana Marion Indianapolis (Remainder)
10 North Carolina Robeson Not in a city
sqerror value .pred
1 8.001082e-08 11.05091 11.05063
2 3.172598e-07 12.16204 12.16261
3 4.516106e-07 12.43697 12.43765
4 1.370443e-06 12.09854 12.09737
5 2.413217e-06 10.45172 10.45328
6 3.412620e-06 11.10807 11.10991
7 5.255941e-06 11.97373 11.97602
8 2.152223e-05 12.53158 12.52694
9 2.278650e-05 13.05221 13.05699
10 2.509250e-05 11.38707 11.38206

The top 5 locations with the closest predicted values are in Chesterfield county in South Carolina, Saint Louis
county in Missouri, Washington DC, Pulaski county in Arkansas, and Travis county in Texas. of the bottom 5
locations with the farthest predicted values, 3 are in California, specifically in Butte, San Diego, and Fresno
counties. The other two locations are Pinal county in Arizona and El Paso county in Texas. The bottom 5 locations
are all in the Southwest United States, whereas the top 5 locations are spread through the Midwest, East coast,
and South.

The possible reason for the poor performance of the bottom 5 locations by prediction is that the Southwest US
has a dry and dusty climate, and dust could possibly show up as as particulate matter in the PM2.5 readings.
These bottom 5 locations also seem to have some of the largest PM2.5 values, which further confirms this
hypothesis.

The possible reason for the model accurately predicting the top 5 locations is that these locations have a
particularly stable climate, so the only change in air pollution is from human factors, such as population and
traffic, which is what the model includes.

Currently there is no variable in the model that accounts for pollution directly from natural factors. To increase the
performance of the model, it’s hypothesized to add a variable that measures the average humidity of the location.
This will help account for any pollution from dust, because a low humidity would mean a dusty location, which will
increase pollution. This will help reduce the error in prediction from the locations in the Southwest United States.

The numerical models CMAQ and AOD are very good at predicting the PM2.5 concentrations. These variables
had the strongest correlation with PM2.5 as seen in the visualizations. The performance of the model without
PM2.5 and CMAQ is given below:

4/28/23, 5:52 PM Building a Prediction Model for PM2.5 Values across the US

file:///Users/solomon/Desktop/Season 4/SDS332E/Project 2/Project-2--2-.html 19/19

set.seed(2023)

Remove CMAQ, and aod from data
datc = dat2 |> select(-c(id, CMAQ, aod))

Build new model without CMAQ and aod
ffc = datc |> formula(value~.)
wfc = workflow() |> add_formula(ffc) |> add_model(model)
final_fitc = fit(wfc, datc)

Warning: 15 columns were requested but there were 7 predictors in the data. 7
will be used.

Compute predictions and RMSE with this model
datc_pred = dat |> cbind(predict(final_fitc, new_data = datc))
sqrt(mean((datc_pred$value - datc_pred$.pred)^2))

[1] 0.7484225

The RMSE of the random forest model is 0.748 without including the CMAQ and AOD predictor variables. This is
much higher than the RMSE of 0.697 including the variables. Therefore, the numerical models CMAQ and AOD
will be a much more cost-effective solution to monitoring air pollution because they are relatively accurate.

When it comes to applying this model to Alaska and Hawaii, we predict that the model won’t perform as well as
compared to the original data set purely because the model wasn’t built with Alaska or Hawaii data. However, the
model will still be a good predictor because the predictor variables that are used in the model are common to all
locations, such as population density and the primary and secondary road count. We don’t expect any bias or
other variables that aren’t accounted for that are different in Alaska and Hawaii that would drastically decrease the
performance of the model. In addition, these states don’t have a dry and dusty climate, which we predicted
lowered the accuracy of the prediction of the locations in the Southwest US.

The most challenging part of the project was tuning the hyper parameters for the models. Trying to make a grid
for each hyper parameter configuration and then testing each model for the RMSE 5 times took a long time to
compute and had a lot of syntax. Another challenging aspect of the project was finding a fourth prediction model
to use, and understand how it worked in order to apply it. The most important thing that we learned was the
workflow that data scientists go through for building and testing a model. First, the model is built on a training
data set, then the hyper parameters are tuned to the lowest RMSE configuration, and finally the tuned model is
applied to predict the test data set. We learned about the train, test, split model for machine learning and how to
apply k-fold cross validation to model tuning and validation. The final model performed much better than we
expected, as the RMSE was 0.697, and we predicted it to be 2. This is probably because we tuned all three
parameters to make the optimal prediction.

Contributions:
Vardhan - Discussion, Introduction Solomon - Wrangling, Modeling

